

MECH 4000R – The Art and Science of Making Smart Engineering Decisions

School:	School of Engineering
Subject Area:	Mechanical and Aerospace Engineering
Course Credit:	3
Instructor:	HO Vincent
Pre-requisite/co-requisite:	Nil

<u>Notes:</u>

• The syllabi provided here is for reference only and may be subject to changes and adjustments as determined by the course instructors.

MECH4000R – The Art and Science of Making Smart Engineering Decisions

Summer 2024/25 (3-credits)

Course Instructor: Prof. Vincent HO

Class Quota: 60

Textbook: Nil

Course Description:

This summer course will explore the exciting world of decision-making in engineering design through a series of engaging and interactive classes. With a focus on practical applications, students will learn how to make risk-informed and cost-effective decisions in the engineering process, as well as in their careers. The course will feature light materials, hands-on activities, and real-world case studies to keep the learning experience fruitful and enjoyable.

Learning Objectives and Outcome:

This course is designed to equip students with essential decision-making skills for their future engineering careers. By the end of the course, students will be able to:

- Understand the importance of decision-making in engineering design
- Apply basic decision analysis techniques to engineering problems
- Understand the definitions of risk and its applications in engineering analyses
- Apply basic risk assessment tools and build logic models
- Balance decision-making processes with multiple criteria and decision-makers
- Demonstrate cost-effectiveness of engineering decisions
- Communicate decisions effectively through presentations and reports

Prerequisite (if applicable): Nil.

Grading Policy (Letter Grade)

Class Participation	30 marks
Examinations	30 marks
Case study/ assignments	40 marks
Total:	100 marks

Grade	Short	Description
	description	
A+, A, A-	Excellent	Demonstrate evidence of critical thinking and proficiency in interpreting and applying
		engineering decision analysis principles and best practices, showcasing an excellent
		understanding of the intended subject learning outcomes.
B+, B, B-	Good	Demonstrate evidence of making well-founded judgments and critically analysing
		issues using engineering decision analysis techniques, illustrating a strong
		understanding of the intended subject learning outcomes.
C+, C, C-	Satisfactory	Demonstrate evidence of some capacity for analysis and judgment in engineering
		decision analysis, demonstrating a satisfactory understanding of the intended subject
		learning outcomes.

D+ , D	Marginal Pass	Demonstrate evidence of achieving the intended subject learning outcomes	
		marginally, being able to make basic comparisons, connections, and judgments	
		regarding engineering decision analysis topics covered in the subject. 2	
F	Fail	Demonstrate evidence of an inadequate achievement and understanding of the	
		intended learning outcomes due to a lack of knowledge and understanding of the	
		subject matter. The analysis provided is often irrelevant or incomplete.	

Course Schedule

Week	Торіс	
1	Basic decision-making theories and principles, decision analysis	
2	Definition of risk, risk control strategies, logic trees, cost-benefit analysis	
3	Making decisions and multiple attributes, multiple decision-makers	
4	Risk communication, case studies	